skip to main content

Title: Solid state reaction synthesis and photoluminescence properties of Dy{sup 3+} doped Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12} phosphor

Highlights: • Ca{sub 3−x}Sc{sub 2}Si{sub 3}O{sub 12}:xDy{sup 3+} (0.01 ≤ x ≤ 0.03) was successfully synthesized under a reducing atmosphere. • The thermal stability of the Ca{sub 2.975}Sc{sub 2}Si{sub 3}O{sub 12}:0.025Dy{sup 3+} is superior to commercial phosphors in theory and experiment. • The optimal chromaticity coordinates of Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} is (x = 0.3425, y = 0.3343) upon 350 nm excitation. - Abstract: The white emission phosphor Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} was synthesized by the solid-state reaction. Phase analysis and characteristic luminescence properties are investigated by X-ray diffraction and photoluminescence spectra measurement. Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} phosphor shows strong absorption in 350–410 nm region and exhibits white emission with CIE chromaticity coordinates of (0.3425, 0.3343). Its emission intensity at 250 °C remained 74% of that measured at room temperature. Moreover, the activation energy is also calculated through the Arrhenius equation. The result shows that the thermostability of Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} is superior than that of commercial phosphor Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Ce{sup 3+}. The outstanding luminescent properties indicate that Ca{sub 3}Sc{sub 2}Si{sub 3}O{sub 12}:Dy{sup 3+} could be a potential white light emission phosphor.
Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22475986
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 71; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACTIVATION ENERGY; ARRHENIUS EQUATION; CALCIUM COMPOUNDS; DOPED MATERIALS; DYSPROSIUM ADDITIONS; OPTICAL PROPERTIES; PHASE STUDIES; PHOTOLUMINESCENCE; SCANDIUM COMPOUNDS; SILICATES; SOLIDS; STABILITY; SYNTHESIS; TEMPERATURE RANGE 0273-0400 K; VISIBLE RADIATION; X-RAY DIFFRACTION