skip to main content

Title: Enhancement of photoluminescence properties and modification of crystal structures of Si{sub 3}N{sub 4} doping Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors

Highlights: • Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} phosphors were prepared. • The luminescence intensity of Li{sub 2}Sr{sub 0.995}SiO{sub 4}:Eu{sup 2+} was enhanced by doping Si{sub 3}N{sub 4}. • The fluorescence decay times and thermal stability were enhanced by doping Si{sub 3}N{sub 4}. - Abstract: Si{sub 3}N{sub 4} modified Li{sub 2}Sr{sub 0.995}SiO{sub 4}:0.005Eu{sup 2+} (Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+}) phosphors were synthesized with the conventional solid-state reaction in the reduced atmosphere. The crystal structure and vibrational modes were analyzed by X-ray diffraction, Raman scattering spectroscopy and Rietveld crystal structure refinement. Photoluminescence (PL) and photoluminescence excitation (PLE) spectra showed that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} powder exhibited a broad yellow emission band centered at 560 nm under the excitation of 460 nm visible light, due to the 4f{sup 6}5d{sup 1} → 4f{sup 7} transition of Eu{sup 2+}. The partial nitridation of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} (x = 0.01) phosphors led to a large enhancement in the luminescence intensity, as much as 190%. At the same time, the fluorescence decay behavior curves further showed that the photoluminescence efficiencies of Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors were enhanced by addition of Si{sub 3}N{sub 4}. Themore » temperature quenching characteristics confirmed that the oxynitride based Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} showed slightly higher stability. It is implied that Li{sub 2}Sr{sub 0.995}SiO{sub 4−3x/2}N{sub x}:0.005Eu{sup 2+} phosphors had a possible potential application on white LEDs to match blue light chips.« less
Authors:
 [1] ;  [1] ;  [2] ; ;  [1] ;  [3] ;  [4] ; ;  [1]
  1. College of Electronic Information and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)
  2. College of Materials Sciences and Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China)
  3. Instrument Analysis and Testing Center, Fuzhou University, Fuzhou 350002 (China)
  4. Ningbo Institute of Materials Technologies and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)
Publication Date:
OSTI Identifier:
22475913
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 70; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRYSTAL STRUCTURE; EUROPIUM ADDITIONS; EXCITATION; FLUORESCENCE; LITHIUM COMPOUNDS; MODIFICATIONS; OPTICAL PROPERTIES; PHOSPHORS; PHOTOLUMINESCENCE; POWDERS; QUENCHING; RAMAN EFFECT; SILICATES; SILICON NITRIDES; SPECTRA; SPECTROSCOPY; STABILITY; STRONTIUM COMPOUNDS; VISIBLE RADIATION; X-RAY DIFFRACTION