skip to main content

Title: Hydrothermal synthesis and photocatalytic activities of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} composite micro-platelets

Highlights: • Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} composite was fabricated by combining hydrothermal reaction and molten salt method. • Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} exhibits higher photocatalytic activity than pure Bi{sub 4}Ti{sub 3}O{sub 12}. • The absorption light of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} has been broadened to visible light. - Abstract: In this study, Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} micro-platelets were successfully synthesized by using hydrothermal and molten salt methods, and the morphology and photocatalytic degradation performance of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} was characterized. The results indicated a much higher degradation rate of methylene blue and methylene orange, reaching more than 90% and 65%, respectively, within 3 h under visible-light irradiation. Compared with pure Bi{sub 4}Ti{sub 3}O{sub 12}, the photocatalytic activity of Bi{sub 4}Ti{sub 3}O{sub 12}/SrTiO{sub 3} was significantly better, due to the micron–submicron heterojunction with SrTiO{sub 3} reducing the band gap of Bi{sub 4}Ti{sub 3}O{sub 12}. In addition, the perovskite structure layer facilitates the mobility of the photogenerated carriers and hampers their recombination, which were affected the photocatalytic properties.
Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22475901
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 70; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ABSORPTION; BISMUTH COMPOUNDS; CARRIERS; COMPOSITE MATERIALS; HETEROJUNCTIONS; HYDROTHERMAL SYNTHESIS; IRRADIATION; METHYLENE BLUE; MOLTEN SALTS; PEROVSKITE; PHOTOCATALYSIS; RECOMBINATION; STRONTIUM TITANATES; TITANATES; VISIBLE RADIATION; X-RAY DIFFRACTION