skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Improving photoelectrochemical performance by building Fe{sub 2}O{sub 3} heterostructure on TiO{sub 2} nanorod arrays

Journal Article · · Materials Research Bulletin
 [1];  [1];  [2];  [1];  [2];  [1]
  1. Department of Applied Physics, Chongqing University, Chongqing 400044 (China)
  2. Key Laboratory of Special Power Supply, Chongqing Communication Institute, Chongqing 400035 (China)

Highlights: • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure was fabricated by two-step method. • The photoelectrochemical properties were studied upon visible light irradiation. • Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure shows superior photoelectrochemical property. • A possible mechanism for enhanced photoelectrochemical property was put forward. - Abstract: Fe{sub 2}O{sub 3}@TiO{sub 2} heterostructure nanorod arrays were synthesized on a fluorine-doped tin oxide conductive (FTO) glass substrate via two-step method for improving photoelectrochemical activity of TiO{sub 2}. The TiO{sub 2} nanorod arrays on FTO substrate were first prepared by hydrothermal method and then Fe{sub 2}O{sub 3} nanoparticles were coated onto the surface of TiO{sub 2} nanorod arrays through chemical bath deposition. The heterojunction yielded a photocurrent density of 39.75 μA cm{sup −2} at a bias potential of 0 V (vs. Ag/AgCl) under visible light irradiation, which is 2.2 times as much as that produced by the pure TiO{sub 2} nanorod arrays. The enhanced photoelectrochemical activity is attributed to the extension of the light response range and efficient separation of photogenerated carriers. Our results have demonstrated the advantage of the novel Fe{sub 2}O{sub 3}@TiO{sub 2} heterojunction and will provide a new path to the fabrication of heterostructural materials.

OSTI ID:
22475898
Journal Information:
Materials Research Bulletin, Vol. 70; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English