skip to main content

Title: Effects of BiAlO{sub 3}-doping on dielectric and ferroelectric properties of 0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3} lead-free ceramics

Highlights: • BiAlO{sub 3}-doped BNT-based ceramics were synthesized via a conventional solid state reaction method. • T% values are 56%, 32%, 37%, and 37% for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively. • The mean grain sizes of the ceramics with x = 0, 0.01, 0.02 and 0.06 are about 1.1, 0.9, 0.8 and 0.7 μm, respectively. • Dielectric anomalies in the ϵ{sub r}–T curves are close related to the BiAlO{sub 3} amounts. • The ceramic with x = 0.01 shows the P{sub m} of 32.5 μC/cm{sup 2}, P{sub r} of 24.1 μC/cm{sup 2}, E{sub c} of 20.0 kV/cm and d{sub 33} of 166 pC/N. - Abstract: (1 − x)(0.93Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–0.07BaTiO{sub 3})–xBiAlO{sub 3} (BNBT-xBA, x = 0, 0.01, 0.02, 0.06) lead-free ceramics were synthesized via a conventional solid state reaction method. Crystallite structure, microstructure, dielectric and ferroelectric properties of the BNBT–xBA ceramics were studied in detail. X-ray diffraction results show that all ceramics exhibit typical diffraction peaks of ABO{sub 3} perovskite structure. Scanning electron microscope images show that all samples have fine microstructures. Both Curie temperature and maximum dielectric constant vary with the change in the BiAlO{sub 3} amounts. The values of hysteresis loopmore » squareness were calculated to be 1.26, 0.81, 0.51 and 0.36 for the ceramics with x = 0, 0.01, 0.02 and 0.06, respectively, indicating a decreased switching behavior of polarization. The changes in dielectric and ferroelectric properties of the ceramics are also discussed.« less
Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22475816
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 67; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALUMINATES; BARIUM COMPOUNDS; BISMUTH COMPOUNDS; CERAMICS; COMPOSITE MATERIALS; CURIE POINT; DOPED MATERIALS; FERROELECTRIC MATERIALS; GRAIN SIZE; HYSTERESIS; PERMITTIVITY; PEROVSKITE; POLARIZATION; SCANNING ELECTRON MICROSCOPY; SODIUM COMPOUNDS; SOLIDS; TITANATES; X-RAY DIFFRACTION