skip to main content

SciTech ConnectSciTech Connect

Title: Synthesis and characterization of CdS/BiPO{sub 4} heterojunction photocatalyst

Highlights: • A CdS/BiPO{sub 4} heterojunction was prepared by the solvothermal method. • The CdS/BiPO{sub 4} composite has the higher photocatalytic activity than the individual ones. • The optimal mass ratio of CdS to BiPO{sub 4} was 0.5. • The heterojunction structure of CdS/BiPO{sub 4} induces an effective electron–hole separation. - Abstract: A series of CdS/BiPO{sub 4} heterojunction photocatalysts with the visible-light response were synthesized by the solvothermal method. The resulting products were characterized by X-ray diffraction, Transmission electron microscopy, X-ray photoelectron spectroscopy, and UV–vis diffuse reflection spectroscopy. CdS nanoparticles with the size at range of 5–7 nm were immobilized on the surface of BiPO{sub 4} nanorods. The CdS/BiPO{sub 4} composite exhibited much higher photodegradation rate of methylene blue under visible light irradation compared to the pure CdS and BiPO{sub 4}. The optimal mass ratio of CdS to BiPO{sub 4} was 0.5, the photodegradation rate of which is 2.1 times higher than that of CdS. The enhancement of photocatalytic activity is attributed to the heterojunction structure of CdS/BiPO{sub 4} composite which induced the effective electron–hole separation between CdS and BiPO{sub 4}.
Authors:
; ; ; ;
Publication Date:
OSTI Identifier:
22475809
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 66; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BISMUTH PHOSPHATES; CADMIUM SULFIDES; ELECTRONS; HETEROJUNCTIONS; MASS; METHYLENE BLUE; NANOPARTICLES; NANOSTRUCTURES; PHOTOCATALYSIS; REFLECTION; SURFACES; SYNTHESIS; TRANSMISSION ELECTRON MICROSCOPY; VISIBLE RADIATION; X-RAY DIFFRACTION; X-RAY PHOTOELECTRON SPECTROSCOPY