skip to main content

SciTech ConnectSciTech Connect

Title: Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode

Highlights: • p-NiO/n-ZnO heterojunction diode with enhanced junction parameters has been prepared. • Temperature dependent I–V throw insight into the involved conduction mechanism. • SCLC with exponential trap distribution was found to be the dominant mechanism. • C–V measurement at different frequencies support the presence of traps. - Abstract: The development of short-wavelength p–n junction is essentially important for the realization of transparent electronics for next-generation optoelectronic devices. In the present work, a p–n heterojunction diode based on p-NiO/n-ZnO has been prepared under the optimised growth conditions exhibiting improved electrical and junction parameters. The fabricated heterojunction gives typical current–voltage (I–V) characteristics with good rectifying behaviour (rectification ratio ≈ 10{sup 4} at 2 V). The temperature dependent current–voltage characteristics of heterojunction diode have been studied and origin of conduction mechanism is identified. The space-charge limited conduction with exponential trap distribution having deep level trap is found to be the dominant conduction mechanism in the fabricated p–n heterojunction diode. The conduction and valence band discontinuities for NiO/ZnO heterostructure have been determined from the capacitance–voltage (C–V) measurements.
Authors:
 [1] ;  [2] ;  [1]
  1. Department of Physics and Astrophysics, University of Delhi, Delhi-110007 (India)
  2. Physics department, Miranda House, University of Delhi, Delhi-110007 (India)
Publication Date:
OSTI Identifier:
22475796
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 66; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CAPACITANCE; CURRENTS; DISTRIBUTION; ELECTRIC CONTACTS; HETEROJUNCTIONS; NICKEL OXIDES; SPACE CHARGE; TEMPERATURE DEPENDENCE; TRAPS; VALENCE; WAVELENGTHS; ZINC OXIDES