skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural and magnetic study of Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} nanoferrites

Abstract

Graphical abstract: Hyperfine field of individual sites (inset) and weighted average hyperfine field as a function of Al{sup 3+} content for Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4}. - Highlights: • Grain size reduction with Al{sup 3+} substitution. • Preferred occupancy of Al{sup 3+} at B site for higher Al{sup 3+} content. • Reduction in Ms, Tc, and hyperfine field with increasing Al{sup 3+} content. • Size dependent variation in coercivity. • Changes in isomer shift due to competing effect of volume and substitution. - Abstract: Nanostructured Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrites were synthesized via the wet chemical method. X-ray diffraction, transmission electron microscopy, and magnetization measurements have been used to investigate the structural and magnetic properties of spinel ferrites calcined at 950 °C. With the doping of Al{sup 3+}, the particle size of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} first increased to 47 nm at x = 0.4 and then decreased down to 37 nm at x = 1. The main two absorption bands in IR spectra were observed around 600 cm{sup −1} and 400 cm{sup −1} corresponding to stretching vibration of tetrahedral and octahedral groupmore » Fe{sup 3+}–O{sup 2−}. Saturation magnetization and hyperfine field values decreased linearly with Al{sup 3+} due to magnetic dilution and the relative strengths of Fe–O–Me (Me = Fe, Ni, Zn, and Al) superexchanges. The coercive field showed an inverse dependence on ferrite particle size with minimum value of 82 Oe for x = 0.4. A continuous drop in Curie temperature was observed with the Al{sup 3+} substitution. From the Moessbauer spectral analysis and X-ray diffraction analysis, it is deduced that Al{sup 3+} for x < 0.4 has no obvious preference for either tetrahedral or octahedral site but has a greater preference for the B site for x > 0.4. In nutshell the study presents detailed structural and magnetic, and Moessbauer analysis of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} ferrites.« less

Authors:
; ;
Publication Date:
OSTI Identifier:
22475768
Resource Type:
Journal Article
Journal Name:
Materials Research Bulletin
Additional Journal Information:
Journal Volume: 65; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0025-5408
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ABSORPTION; ALUMINIUM ADDITIONS; CURIE POINT; DILUTION; DOPED MATERIALS; FERRITES; GRAIN SIZE; INFRARED SPECTRA; MAGNETIC PROPERTIES; MAGNETIZATION; MOESSBAUER EFFECT; NANOSTRUCTURES; NICKEL COMPOUNDS; OXIDES; PARTICLE SIZE; REDUCTION; SATURATION; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION; ZINC COMPOUNDS

Citation Formats

Wang, L., Rai, B. K., and Mishra, S. R. Structural and magnetic study of Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} nanoferrites. United States: N. p., 2015. Web. doi:10.1016/J.MATERRESBULL.2015.01.033.
Wang, L., Rai, B. K., & Mishra, S. R. Structural and magnetic study of Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} nanoferrites. United States. https://doi.org/10.1016/J.MATERRESBULL.2015.01.033
Wang, L., Rai, B. K., and Mishra, S. R. 2015. "Structural and magnetic study of Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} nanoferrites". United States. https://doi.org/10.1016/J.MATERRESBULL.2015.01.033.
@article{osti_22475768,
title = {Structural and magnetic study of Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} nanoferrites},
author = {Wang, L. and Rai, B. K. and Mishra, S. R.},
abstractNote = {Graphical abstract: Hyperfine field of individual sites (inset) and weighted average hyperfine field as a function of Al{sup 3+} content for Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4}. - Highlights: • Grain size reduction with Al{sup 3+} substitution. • Preferred occupancy of Al{sup 3+} at B site for higher Al{sup 3+} content. • Reduction in Ms, Tc, and hyperfine field with increasing Al{sup 3+} content. • Size dependent variation in coercivity. • Changes in isomer shift due to competing effect of volume and substitution. - Abstract: Nanostructured Al{sup 3+} doped Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0) ferrites were synthesized via the wet chemical method. X-ray diffraction, transmission electron microscopy, and magnetization measurements have been used to investigate the structural and magnetic properties of spinel ferrites calcined at 950 °C. With the doping of Al{sup 3+}, the particle size of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} first increased to 47 nm at x = 0.4 and then decreased down to 37 nm at x = 1. The main two absorption bands in IR spectra were observed around 600 cm{sup −1} and 400 cm{sup −1} corresponding to stretching vibration of tetrahedral and octahedral group Fe{sup 3+}–O{sup 2−}. Saturation magnetization and hyperfine field values decreased linearly with Al{sup 3+} due to magnetic dilution and the relative strengths of Fe–O–Me (Me = Fe, Ni, Zn, and Al) superexchanges. The coercive field showed an inverse dependence on ferrite particle size with minimum value of 82 Oe for x = 0.4. A continuous drop in Curie temperature was observed with the Al{sup 3+} substitution. From the Moessbauer spectral analysis and X-ray diffraction analysis, it is deduced that Al{sup 3+} for x < 0.4 has no obvious preference for either tetrahedral or octahedral site but has a greater preference for the B site for x > 0.4. In nutshell the study presents detailed structural and magnetic, and Moessbauer analysis of Ni{sub 0.75}Zn{sub 0.25}Fe{sub 2−x}Al{sub x}O{sub 4} ferrites.},
doi = {10.1016/J.MATERRESBULL.2015.01.033},
url = {https://www.osti.gov/biblio/22475768}, journal = {Materials Research Bulletin},
issn = {0025-5408},
number = ,
volume = 65,
place = {United States},
year = {Fri May 15 00:00:00 EDT 2015},
month = {Fri May 15 00:00:00 EDT 2015}
}