skip to main content

Title: The Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram refinement, Bi{sub 3}FeSb{sub 2}O{sub 11} structure peculiarities and magnetic properties

The refinement of the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram has been performed and the existence of the two ternary compounds has been confirmed. The first one with a pyrochlore-type structure (sp. gr. Fd 3-barm) exists in the wide solid solution region, (Bi{sub 2−x}Fe{sub x})Fe{sub 1+y}Sb{sub 1−y}O{sub 7±δ}, where x=0.1–0.4 and y=−0.13–0.11. The second one, Bi{sub 3}FeSb{sub 2}O{sub 11}, corresponds to the cubic KSbO{sub 3}-type structure (sp. gr. Pn 3-bar) with unit cell parameter a=9.51521(2) Å. The Rietveld structure refinement showed that this compound is characterized by disordered structure. The Bi{sub 3}FeSb{sub 2}O{sub 11} factor group analysis has been carried out and a Raman spectrum has been investigated. According to magnetization measurements performed at the temperature range 2–300 K it may be concluded that the Bi{sub 3}FeSb{sub 2}O{sub 11} magnetic properties can be substantially described as a superposition of strong short-range antiferromagnetic exchange interactions realizing inside the [(FeSb{sub 2})O{sub 9}] 3D-framework via different pathways. - Graphical abstract: The refinement of the Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram has been performed and the existence of the solid solution with a pyrochlore-type structure (sp. gr. Fd 3-barm) and Bi{sub 3}FeSb{sub 2}O{sub 11}, correspond ofmore » the cubic KSbO{sub 3}-type structure (sp. gr. Pn 3-bar has been confirmed. The structure refinement, Raman spectroscopy as well as magnetic measurements data of Bi{sub 3}FeSb{sub 2}O{sub 11} are presented. - Highlights: • The Bi{sub 2}O{sub 3}–Fe{sub 2}O{sub 3}–Sb{sub 2}O{sub 5} system phase diagram refinement has been performed. • The Bi{sub 3}FeSb{sub 2}O{sub 11} existence along with pyrochlore structure compound is shown. • It was determined that the Bi{sub 3}FeSb{sub 2}O{sub 11} is of disordered cubic KSbO{sub 3}-type structure. • Factor group analysis of Bi{sub 3}FeSb{sub 2}O{sub 11} vibrational spectrum has been performed. • Short-range antiferromagnetic interactions govern Bi{sub 3}FeSb{sub 2}O{sub 11} magnetic behavior.« less
Authors:
 [1] ; ; ;  [1] ; ;  [2] ;  [3]
  1. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991 (Russian Federation)
  2. National Research Center “Kurchatov Institute”, Academy Kurchatov Sq. 1, Moscow 123182 (Russian Federation)
  3. Department of Materials Science, Lomonosov Moscow State University, Leninskiye Gory 1-73, Laboratory Building B, Moscow 119991 (Russian Federation)
Publication Date:
OSTI Identifier:
22475605
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 225; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ANTIFERROMAGNETISM; ANTIMONY OXIDES; BISMUTH OXIDES; EXCHANGE INTERACTIONS; FERRITES; IRON OXIDES; LATTICE PARAMETERS; MAGNETIC PROPERTIES; MAGNETIZATION; PHASE DIAGRAMS; PYROCHLORE; RAMAN SPECTRA; RAMAN SPECTROSCOPY; SOLID SOLUTIONS; TEMPERATURE DEPENDENCE