skip to main content

SciTech ConnectSciTech Connect

Title: Transport properties of the SnBi{sub 2}Te{sub 4}–PbBi{sub 2}Te{sub 4} solid solution

We report on the electrical and thermal transport properties of the Sn{sub 1−x}Pb{sub x}Bi{sub 2}Te{sub 4} series and we discuss the potential of these materials for thermoelectric conversion applications. From the evolution of the XRD patterns, we can confidently conclude that a complete solid solution exists between SnBi{sub 2}Te{sub 4} and PbBi{sub 2}Te{sub 4}, with no miscibility gap. A crossover from p-type conduction in Sn-rich samples to n-type conduction in Pb-rich ones has been observed, with a transition between x=0.3 and 0.4. A concomitant increase of the electrical resistivity and of the Seebeck coefficient has been observed in the solid solution, which leads to almost constant values of the thermoelectric power factor. Moreover, the thermal conductivity is slightly reduced in the solid solution. The best figure of merit ZT values at room temperature have been observed for p-type Sn{sub 0.8}Pb{sub 0.2}Bi{sub 2}Te{sub 4} with ZT=0.25 and for n-type Sn{sub 0.3}Pb{sub 0.7}Bi{sub 2}Te{sub 4} with ZT=0.15. - Graphical abstract: Seebeck coefficient in (Pb/Sn)Bi{sub 2}Te{sub 4} solid solution. - Highlights: • A complete solid solution exists between PbBi{sub 2}Te{sub 4} and SnBi{sub 2}Te{sub 4.} • A crossover between p-type and n-type is observed for 0.3
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22475590
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 225; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; BISMUTH TELLURIDES; ELECTRIC CONDUCTIVITY; N-TYPE CONDUCTORS; PHASE TRANSFORMATIONS; P-TYPE CONDUCTORS; SOLID SOLUTIONS; SOLUBILITY; THERMAL CONDUCTIVITY; THERMOELECTRIC CONVERSION; TIN COMPOUNDS; X-RAY DIFFRACTION