skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pore surface engineering in a zirconium metal–organic framework via thiol-ene reaction

Journal Article · · Journal of Solid State Chemistry

A porous olefin-functionalized Zr(IV)-based metal–organic framework, denoted as UiO-68-allyl, has been constructed. Our results clearly demonstrated that the surface of UiO-68-allyl could be decorated with organic molecule (ethanethiol) via thiol-ene reaction. More importantly, the crystallinity of the framework were maintained during the post-synthetic modification process. However, the microporosity of the framework is retained but the surface area decreased, due to the grafting of ethylthio groups into the pores. From our studies, we can conclude that the strategy of post-synthetic modification of UiO-68-allyl via thiol-ene reaction may be general. Furthermore, we may anchor other desired functional group onto the pore walls in Zr-MOFs via thiol-ene reaction, enabling more potential applications. - graphical abstract: In this manuscript, we reported the post-synthetic modification of an olefin-functionalized Zr(IV)-based metal–organic framework via thiol-ene reaction. - Highlights: • A porous olefin-functionalized Zr(IV)-based metal–organic framework has been constructed. • The surface of olefin-functionalized Zr-MOF could be decorated with organic molecules via thiol-ene reaction. • The crystallinity and permanent porosity of the framework were maintained during the post-synthetic modification process.

OSTI ID:
22475541
Journal Information:
Journal of Solid State Chemistry, Vol. 223; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English