skip to main content

Title: Synthesis, characterizations and catalytic studies of a new two-dimensional metal−organic framework based on Co–carboxylate secondary building units

A metal–organic framework [Co{sub 3}(BDC){sub 3}(DMF){sub 2}(H{sub 2}O){sub 2}] was synthesized and structurally characterized. X-ray single crystal analysis revealed that the framework contains a 2D polymeric chain through coordination of 1,4-benzenedicarboxylic acid linker ligand to cobalt centers. The polymer crystallize in monoclinic P2{sub 1}/n space group with a=13.989(3) Å, b=9.6728(17) Å, c=16.707(3) Å, and Z=2. The polymer features a framework based on the perfect octahedral Co–O6 secondary building units. The catalytic activities of [Co{sub 3}(BDC){sub 3}(DMF){sub 2}(H{sub 2}O){sub 2}]{sub n} for olefins oxidation was conducted. The heterogeneous catalyst could be facilely separated from the reaction mixture, and reused three times without significant degradation in catalytic activity. Furthermore, no contribution from homogeneous catalysis of active species leaching into reaction solution was detected. - Graphical abstract: A metal–organic framework of [Co{sub 3}(BDC){sub 3}(DMF){sub 2}(H{sub 2}O){sub 2}] was synthesized by hydrothermal method. This 2D-periodic framework is constructed from the infinite Co–O–C secondary building units and crystallizes in the monoclinic P2{sub 1}/n space group based on Co(II)–carboxylate units. The catalytic oxidation of various olefins was effectively carried out with [Co{sub 3}(BDC){sub 3}(DMF){sub 2}(H{sub 2}O){sub 2}]{sub n} catalyst by TBHP as oxidant. - Highlights: • A metal–organic framework of [Co{sub 3}(BDC){sub 3}(DMF){sub 2}(H{sub 2}O){sub 2}]more » is prepared by hydrothermal method. • The [Co{sub 3}(BDC){sub 3}(DMF){sub 2}(H{sub 2}O){sub 2}]{sub n} is constructed from Co–carboxylate secondary building units. • This coordination polymer displayed high catalytic activity for olefin oxidation reactions. • The catalytic reaction is heterogeneous and catalyst can be simply separated. • The heterogeneous catalyst can be reused several times without significant loss of catalytic activity.« less
Authors:
 [1] ;  [1] ;  [2]
  1. Department of Chemistry, Sharif University of Technology, PO Box 11155-3516, Tehran (Iran, Islamic Republic of)
  2. Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb (Croatia)
Publication Date:
OSTI Identifier:
22475534
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 223; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ALKENES; CARBONATES; CATALYSTS; COBALT; COBALT COMPLEXES; HOMOGENEOUS CATALYSIS; HYDROTHERMAL SYNTHESIS; LEACHING; LIGANDS; MONOCLINIC LATTICES; MONOCRYSTALS; OXIDATION; OXIDIZERS; PERIODICITY; POLYMERS; SOLUTIONS; TWO-DIMENSIONAL SYSTEMS; X RADIATION