skip to main content

SciTech ConnectSciTech Connect

Title: Luminescent MOFs comprising mixed tritopic linkers and Cd(II)/Zn(II) nodes for selective detection of organic nitro compounds and iodine capture

Two CPs ([Cd{sub 3}(BTC){sub 2}(TIB){sub 2}(H{sub 2}O){sub 4}].(H{sub 2}O){sub 2}){sub n} (1) and ([Zn{sub 3}(BTC){sub 2}(TIB){sub 2}].(H{sub 2}O){sub 6}){sub n} (2) composed of tripodal linkers BTC (1,3,5-benzenetricarboxylate) and TIB (1,3,5-tris(imidazol-1-ylmethyl)benzene) were synthesized via solvothermal route and structurally characterized. Single crystal structural analysis reveals 1 possesses a novel 3D framework structure, whereas 2 represents a previously established compound. Owing to the d{sup 10} configuration of metal nodes and robust 3D frameworks, 1 and 2 exhibit excellent fluorescence properties which have been exploited to sense organic nitro compounds in vapor phase. Compound 1 demonstrates selective sensing of nitromethane over structurally similar methanol with ca. 70 and 43% fluorescence quenching in case of former and later. Similarly, 58% fluorescence quenching was observed in case of nitrobenzene over the structurally resembling toluene for which 30% quenching was observed. Compound 2 did not show any preference for nitro compounds and exhibited comparable fluorescence quenching when exposed to the vapors of nitro or other geometrically resembling organic molecules. Furthermore, adsorption experiments revealed that 1 and 2 can uptake 2.74 and 14.14 wt% molecular iodine respectively in vapor phase which can be released in organic solvents such as hexane and acetonitrile. The maximal iodine uptake in casemore » of 1 and 2 corresponds to 0.15 and 0.80 molecules of iodine per formula unit of respective frameworks. Comprehensive structural description, thermal stability and luminescence behavior for both CPs has also been presented. - Graphical abstract: Two 3D luminescent CPs comprising mixed tripodal ligands have been hydrothermally synthesized and structurally characterized. Iodine encapsulation capacity of synthesized CPs is evaluated and their fluorescence quenching in presence of small organic molecules is exploited for sensing of nitro organics. - Highlights: • Two 3D mixed ligand coordination polymers containing Cd and Zn center are prepared. • Crystal structure and thermal stability of synthesized CPs has been described. • Photoluminescence intensity of CPs was observed to vary in presence of organic vapors. • Photoluminescence quenching in case of Cd CP is exploited to selectively sense nitro organics. • These thermally stable robust CPs are also used for iodine adsorption.« less
Authors:
;  [1] ;  [2] ;  [1] ;  [1] ;  [2]
  1. Analytical Discipline and Centralized Instrument Facility, CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India)
  2. (AcSIR), CSIR–Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar 364002, Gujarat (India)
Publication Date:
OSTI Identifier:
22475533
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 223; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ACETONITRILE; BENZENE; CRYSTAL STRUCTURE; ENCAPSULATION; FLUORESCENCE; HEXANE; HYDRATES; HYDROTHERMAL SYNTHESIS; IODINE; LIGANDS; METHANOL; MOLECULES; MONOCRYSTALS; NITROBENZENE; NITROMETHANE; ORGANIC SOLVENTS; PHOTOLUMINESCENCE; TITANIUM BORIDES; TOLUENE; UPTAKE