skip to main content

Title: Toward zero waste: Composting and recycling for sustainable venue based events

Highlights: • Venues have billions of customers per year contributing to waste generation. • Waste audits of four university baseball games were conducted to assess venue waste. • Seven scenarios including composting were modeled using EPA’s WARM. • Findings demonstrate tradeoffs between emissions, energy, and landfill avoidance. • Sustainability of handling depends on efficacy of collection and treatment impacts. - Abstract: This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO{sub 2} equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO{sub 2} eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three binmore » collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO{sub 2} eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game.« less
Authors:
 [1] ;  [2] ;  [3] ;  [4]
  1. Arizona State University, School of Sustainable Engineering and the Built Environment, 370 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States)
  2. University of Pittsburgh, Civil and Environmental Engineering, 153 Benedum Hall, 3700 O’Hara Street, Pittsburgh, PA 15261-3949 (United States)
  3. Arizona State University, University Sustainability Practices, 1130 East University Drive, Suite 206, Tempe, AZ 85287 (United States)
  4. Arizona State University, School of Sustainable Engineering and the Built Environment, 375 Interdisciplinary Science and Technology Building 4 (ISTB4), 781 East Terrace Road, Tempe, AZ 85287-6004 (United States)
Publication Date:
OSTI Identifier:
22472506
Resource Type:
Journal Article
Resource Relation:
Journal Name: Waste Management; Journal Volume: 38; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; AVOIDANCE; CARBON DIOXIDE; CONTAMINATION; ENERGY CONSUMPTION; MATERIALS; POLLUTION ABATEMENT; RECYCLING; RETENTION; SANITARY LANDFILLS; SUSTAINABILITY; WASTE PROCESSING