skip to main content

Title: Shooting quasiparticles from Andreev bound states in a superconducting constriction

A few-channel superconducting constriction provides a set of discrete Andreev bound states that may be populated with quasiparticles. Motivated by recent experimental research, we study the processes in an a.c. driven constriction whereby a quasiparticle is promoted to the delocalized states outside the superconducting gap and flies away. We distinguish two processes of this kind. In the process of ionization, a quasiparticle present in the Andreev bound state is transferred to the delocalized states leaving the constriction. The refill process involves two quasiparticles: one flies away while another one appears in the Andreev bound state. We notice an interesting asymmetry of these processes. The electron-like quasiparticles are predominantly emitted to one side of the constriction while the hole-like ones are emitted to the other side. This produces a charge imbalance of accumulated quasiparticles, that is opposite on opposite sides of the junction. The imbalance may be detected with a tunnel contact to a normal metal lead.
Authors:
; ;  [1] ;  [2]
  1. University of Grenoble Alpes, INAC-SPSMS (France)
  2. Delft University of Technology, Kavli Institute of NanoScience (Netherlands)
Publication Date:
OSTI Identifier:
22472483
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 119; Journal Issue: 6; Other Information: Copyright (c) 2014 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; BOUND STATE; ELECTRONS; EMISSION; ENERGY GAP; HOLES; QUASI PARTICLES; SUPERCONDUCTING JUNCTIONS; SUPERCONDUCTIVITY; SUPERCONDUCTORS