skip to main content

Title: Gravitating lepton bag model

The Kerr–Newman (KN) black hole (BH) solution exhibits the external gravitational and electromagnetic field corresponding to that of the Dirac electron. For the large spin/mass ratio, a ≫ m, the BH loses horizons and acquires a naked singular ring creating two-sheeted topology. This space is regularized by the Higgs mechanism of symmetry breaking, leading to an extended particle that has a regular spinning core compatible with the external KN solution. We show that this core has much in common with the known MIT and SLAC bag models, but has the important advantage of being in accordance with the external gravitational and electromagnetic fields of the KN solution. A peculiar two-sheeted structure of Kerr’s gravity provides a framework for the implementation of the Higgs mechanism of symmetry breaking in configuration space in accordance with the concept of the electroweak sector of the Standard Model. Similar to other bag models, the KN bag is flexible and pliant to deformations. For parameters of a spinning electron, the bag takes the shape of a thin rotating disk of the Compton radius, with a ring–string structure and a quark-like singular pole formed at the sharp edge of this disk, indicating that the considered lepton bagmore » forms a single bag–string–quark system.« less
Authors:
 [1]
  1. Russian Academy of Sciences, Nuclear Safety Institute (Russian Federation)
Publication Date:
OSTI Identifier:
22472137
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 121; Journal Issue: 2; Other Information: Copyright (c) 2015 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; BAG MODEL; BLACK HOLES; ELECTROMAGNETIC FIELDS; GRAVITATION; HIGGS BOSONS; HIGGS MODEL; KERR METRIC; QUARKS; SPIN; STANDARD MODEL; STANFORD LINEAR ACCELERATOR CENTER; STRING MODELS; SYMMETRY BREAKING