skip to main content

Title: Spatiotemporal optical pulse transformation by a resonant diffraction grating

The diffraction of a spatiotemporal optical pulse by a resonant diffraction grating is considered. The pulse diffraction is described in terms of the signal (the spatiotemporal incident pulse envelope) passage through a linear system. An analytic approximation in the form of a rational function of two variables corresponding to the angular and spatial frequencies has been obtained for the transfer function of the system. A hyperbolic partial differential equation describing the general form of the incident pulse envelope transformation upon diffraction by a resonant diffraction grating has been derived from the transfer function. A solution of this equation has been obtained for the case of normal incidence of a pulse with a central frequency lying near the guided-mode resonance of a diffraction structure. The presented results of numerical simulations of pulse diffraction by a resonant grating show profound changes in the pulse envelope shape that closely correspond to the proposed theoretical description. The results of the paper can be applied in creating new devices for optical pulse shape transformation, in optical information processing problems, and analog optical computations.
Authors:
; ; ;  [1]
  1. Russian Academy of Sciences, Image Processing Systems Institute (Russian Federation)
Publication Date:
OSTI Identifier:
22472004
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 121; Journal Issue: 5; Other Information: Copyright (c) 2015 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; APPROXIMATIONS; COMPUTERIZED SIMULATION; DIFFRACTION; DIFFRACTION GRATINGS; MATHEMATICAL SOLUTIONS; PARTIAL DIFFERENTIAL EQUATIONS; RESONANCE; TRANSFER FUNCTIONS; TRANSFORMATIONS