skip to main content

SciTech ConnectSciTech Connect

Title: Optical properties of a stack of cholesteric liquid crystal and isotropic medium layers

Some new optical properties of a stack consisting of cholesteric liquid crystal (CLC) and isotropic medium layers are studied. The problem is solved by the modified Ambartsumyan method for the summation of layers. Bragg conditions for the photonic band gaps of the proposed system are presented. It is shown that the choice of proper sublayer parameters can be used to control the band structure of the system. In the general case, the effect of full suppression of absorption, which is observed in a finite homogeneous CLC layer, is not detected in the presence of anisotropic absorption in CLC sublayers. It is shown that this effect can be generated in the system under study if certain conditions are imposed on the isotropic sublayer thickness. Under these conditions, the maximum photonic density of states (PDS) increases significantly at the boundaries of the corresponding band. The influence of a change in the CLC sublayer thickness and the system thickness on PDS is investigated.
Authors:
 [1]
  1. Yerevan State University (Armenia)
Publication Date:
OSTI Identifier:
22471933
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Experimental and Theoretical Physics; Journal Volume: 121; Journal Issue: 6; Other Information: Copyright (c) 2015 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ABSORPTION; ANISOTROPY; CONTROL; DENSITY OF STATES; ENERGY GAP; LAYERS; LIQUID CRYSTALS; OPTICAL PROPERTIES; THICKNESS