skip to main content

Title: Dislocation model of nucleation and development of slip bands and their effect on service life of structural materials subject to cyclic loading

Most of the destructions of machine parts are of fatigue character. Under cyclic loading, the surface layer, in which hardening–softening processes rapidly occur, is formed almost at once after its beginning. The interaction of plastic-deformation traces with each other and with other structural elements, such as grains, results in the formation of a characteristic microstructure of the machine-part surface subject to cyclic loadings. The character of accumulation of slip bands and their shape (narrow, wide, twisting, and broken) depends on the conditions under which (under what factors) the cyclic loading occurs. The fatigue-resistance index expressed in terms of the slope of left portion of the fatigue curve linearized in logarithmic coordinates also depends on the set of relevant factors. The dependence of the surface damageability on the fatigue resistance index makes it possible to implement the method of predicting the fatigue curve by the description of the factors acting on a detail or construction. The position of the inflection point on the curve in the highcycle fatigue region (the endurance limit and the number of loading cycles, the ordinate and abscissa of the inflection point on the fatigue curve, respectively) also depends on the set of relevant factors. In combinationmore » with the previously obtained value of the slope of the left portion of the curve in the high-cycle fatigue region, this makes it possible to construct an a priori fatigue curve, thus reducing the scope of required fatigue tests and, hence, high expenses because of their long duration and high cost. The scope of tests upon using the developed method of prediction may be reduced to a minimum of one or two samples at the predicted level of the endurance limit.« less
Authors:
; ;  [1]
  1. Nizhny Novgorod State Technical University (Russian Federation)
Publication Date:
OSTI Identifier:
22471901
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Atomic Nuclei; Journal Volume: 78; Journal Issue: 12; Other Information: Copyright (c) 2015 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BUILDING MATERIALS; DIAGRAMS; DISLOCATIONS; FATIGUE; HARDENING; INDEXES; LAYERS; LOADING; MICROSTRUCTURE; NUCLEATION; PLASTICITY; SERVICE LIFE; SLIP; SURFACES