skip to main content

SciTech ConnectSciTech Connect

Title: Study of a MHEMT heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel MBE-grown on a GaAs substrate using reciprocal space mapping

The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.
Authors:
;  [1] ;  [2] ;  [1]
  1. Russian Academy of Sciences, Institute of Ultrahigh Frequency Semiconductor Electronics (Russian Federation)
  2. Federal Agency on Technical Regulating and Metrology, Center for Study of Surface and Vacuum Properties (Russian Federation)
Publication Date:
OSTI Identifier:
22469818
Resource Type:
Journal Article
Resource Relation:
Journal Name: Semiconductors; Journal Volume: 49; Journal Issue: 8; Other Information: Copyright (c) 2015 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; COMPARATIVE EVALUATIONS; CONCENTRATION RATIO; CRYSTAL STRUCTURE; ELECTRON MOBILITY; GALLIUM ARSENIDES; HETEROJUNCTIONS; INDIUM ARSENIDES; LAYERS; MAPPING; MOLECULAR BEAM EPITAXY; REFLECTION; RELAXATION; SUBSTRATES; SURFACES