skip to main content

Title: Vacancies in epitaxial graphene

The coherent-potential method is used to consider the problem of the influence of a finite concentration of randomly arranged vacancies on the density of states of epitaxial graphene. To describe the density of states of the substrate, simple models (the Anderson model, Haldane-Anderson model, and parabolic model) are used. The electronic spectrum of free single-sheet graphene is considered in the low-energy approximation. Charge transfer in the graphene-substrate system is discussed. It is shown that, in all cases, the density of states of epitaxial graphene decreases proportionally to the vacancy concentration. At the same time, the average charge transferred from graphene to the substrate increases.
Authors:
 [1]
  1. Russian Academy of Sciences, Ioffe Institute (Russian Federation)
Publication Date:
OSTI Identifier:
22469633
Resource Type:
Journal Article
Resource Relation:
Journal Name: Semiconductors; Journal Volume: 49; Journal Issue: 8; Other Information: Copyright (c) 2015 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; APPROXIMATIONS; CONCENTRATION RATIO; DENSITY OF STATES; EPITAXY; GRAPHENE; POTENTIALS; RANDOMNESS; SUBSTRATES; VACANCIES