skip to main content

Title: Allometric scaling for predicting human clearance of bisphenol A

The investigation of interspecies differences in bisphenol A (BPA) pharmacokinetics (PK) may be useful for translating findings from animal studies to humans, identifying major processes involved in BPA clearance mechanisms, and predicting BPA PK parameters in man. For the first time, a large range of species in terms of body weight, from 0.02 kg (mice) to 495 kg (horses) was used to predict BPA clearance in man by an allometric approach. BPA PK was evaluated after intravenous administration of BPA in horses, sheep, pigs, dogs, rats and mice. A non-compartmental analysis was used to estimate plasma clearance and steady state volume of distribution and predict BPA PK parameters in humans from allometric scaling. In all the species investigated, BPA plasma clearance was high and of the same order of magnitude as their respective hepatic blood flow. By an allometric scaling, the human clearance was estimated to be 1.79 L/min (equivalent to 25.6 mL/kg.min) with a 95% prediction interval of 0.36 to 8.83 L/min. Our results support the hypothesis that there are highly efficient and hepatic mechanisms of BPA clearance in man. - Highlights: • Allometric scaling was used to predict BPA pharmacokinetic parameters in humans. • In all species, BPAmore » plasma clearance approached hepatic blood flow. • Human BPA clearance was estimated to be 1.79 L/min.« less
Authors:
; ; ; ; ; ; ;
Publication Date:
OSTI Identifier:
22465749
Resource Type:
Journal Article
Resource Relation:
Journal Name: Toxicology and Applied Pharmacology; Journal Volume: 284; Journal Issue: 3; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; BLOOD FLOW; BLOOD-PLASMA CLEARANCE; DIAGRAMS; DISTRIBUTION; DOGS; HORSES; HUMAN POPULATIONS; INTAKE; LIVER; MICE; RATS; SAMPLING; SCALING; SHEEP; STEADY-STATE CONDITIONS; SWINE