skip to main content

SciTech ConnectSciTech Connect

Title: Self-consistent inclusion of classical large-angle Coulomb collisions in plasma Monte Carlo simulations

Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.
Authors:
; ;
Publication Date:
OSTI Identifier:
22465669
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 299; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COLLISIONS; DISTRIBUTION FUNCTIONS; FOKKER-PLANCK EQUATION; INERTIAL CONFINEMENT; IONS; KNOCK-ON; MONTE CARLO METHOD; PARTICLES; PLASMA SIMULATION; SMALL ANGLE SCATTERING