skip to main content

SciTech ConnectSciTech Connect

Title: Adaptive error covariances estimation methods for ensemble Kalman filters

This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for using information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.
Authors:
 [1] ;  [2]
  1. Department of Mathematics, The Pennsylvania State University, University Park, PA 16802 (United States)
  2. Department of Mathematics and Department of Meteorology, The Pennsylvania State University, University Park, PA 16802 (United States)
Publication Date:
OSTI Identifier:
22465638
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 294; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; DATA COVARIANCES; ERRORS; NONLINEAR PROBLEMS; STATISTICS; STOCHASTIC PROCESSES