skip to main content

Title: Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial

Purpose: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. Methods and Materials: Multileaf collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction (multiple isocenter shift method) to calculate the treated dose (with MLC tracking) and the dose that would have been delivered had MLC tracking not been applied (without MLC tracking). The percentage difference from planned for target and normal tissue dose-volume points were calculated. The hypothesis was tested for each dose-volume value via analysis of variance using the F test. Results: Of the 513 fractions delivered, 475 (93%) were suitable for analysis. The mean difference and standard deviation between the planned and treated MLC tracking doses and the planned and without-MLC tracking doses for all 475 fractions were, respectively, PTV D{sub 99%} −0.8% ± 1.1% versus −2.1% ± 2.7%; CTV D{sub 99%} −0.6% ± 0.8% versus −0.6% ± 1.1%; rectum V{sub 65%} 1.6% ± 7.9% versus −1.2% ± 18%;more » and bladder V{sub 65%} 0.5% ± 4.4% versus −0.0% ± 9.2% (P<.001 for all dose-volume results). Conclusion: This study shows that MLC tracking improves the consistency between the planned and delivered doses compared with the modeled doses without MLC tracking. The implications of this finding are potentially improved patient outcomes, as well as more reliable dose-volume data for radiobiological parameter determination.« less
Authors:
 [1] ;  [2] ;  [3] ;  [2] ;  [1] ; ;  [3] ;  [4] ;  [1]
  1. Radiation Physics Laboratory, University of Sydney, Sydney, NSW (Australia)
  2. (Australia)
  3. Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW (Australia)
  4. Aarhus University Hospital, Aarhus (Denmark)
Publication Date:
OSTI Identifier:
22462412
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 92; Journal Issue: 5; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BLADDER; CLINICAL TRIALS; COLLIMATORS; COMPARATIVE EVALUATIONS; DELIVERY; HYPOTHESIS; NEOPLASMS; PATIENTS; PROSTATE; RADIATION DOSES; RADIOTHERAPY; RECTUM; TRAJECTORIES