skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Involvement of IGF-1 and MEOX2 in PI3K/Akt1/2 and ERK1/2 pathways mediated proliferation and differentiation of perivascular adipocytes

Journal Article · · Experimental Cell Research
 [1]; ;  [2];  [1];  [3];  [2];  [1]
  1. Department of Cardiology, The Second Hospital of Shandong University, No. 247, Beiyuan Road, Shandong, Jinan 250033 (China)
  2. Central Laboratory, The Second Hospital of Shandong University, Shandong, Jinan 250033 (China)
  3. Department of Cardiology, Wendeng Central Hospital of Weihai City, Shandong, Weihai 264400 (China)

Perivascular adipocyte (PVAC) proliferation and differentiation were closely involved in cardiovascular disease. We aimed to investigate whether phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling pathways enhance PVAC functions activated by insulin-like growth factor 1(IGF-1) and suppressed by mesenchyme homeobox 2 (MEOX2). In this study, PVACs from primary culture were cultured and induced to differentiate. Cell viability assays demonstrated that IGF-1 promoted PVAC proliferation and differentiation. However MEOX2 counteracted these IGF-1-mediated actions. Flow Cytometry revealed that IGF-1 increased S phase cells and decreased apoptosis; however, MEOX2 decreased S phase cells, increased G0–G1 phase cells, and promoted apoptosis. During PVAC proliferation and differentiation, IGF-1 activated PI3K/Akt1/2 and ERK1/2 signaling pathways, upregulated the expression of these signaling proteins and FAS, and increased PVAC lipid content. In contrast, MEOX2 constrained the phosphorylation of ERK1/2 and Akt1/2 protein, down-regulated these signaling molecules and FAS, and decreased PVAC lipid content. Instead, MEOX2 knockdown enhanced the ERK1/2 and Akt1/2 phosphorylation, augmented the expression of these signaling molecules and FAS, and increased PVAC lipid content. Our findings suggested that PI3K/Akt1/2 and ERK1/2 activation mediated by IGF-1 is essential for PVAC proliferation and differentiation, and MEOX2 is a promising therapeutic gene to intervene in the signaling pathways and inhibit PVAC functions. - Highlights: • IGF-1 activated PI3K/Akt2 and ERK1/2 pathways to mediate PVAC proliferation and differentiation. • The expression of ERK1, ERK 2, PI3K, Akt1 and Akt2 showed different change trends between PVAC proliferation and differentiation. • MEOX2 effectively expressed in PVAC, increased early and late cellular apoptosis, and inhibited its proliferation. • MEOX2 depressed PVAC differentiation and FAS expression, and decreased lipid content in PVAC. • MEOX2 repressed the effects of IGF-1 on PVAC by restraining the activation of PI3K/Akt1/2 and ERK1/2 signaling pathways.

OSTI ID:
22462254
Journal Information:
Experimental Cell Research, Vol. 331, Issue 1; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0014-4827
Country of Publication:
United States
Language:
English