skip to main content

Title: Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against severalmore » ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.« less
Authors:
 [1] ;  [2] ;  [1] ;  [1] ;  [2] ; ;  [1] ; ; ; ; ;  [1] ;  [2] ; ; ;  [1] ;  [3] ;  [1] ;  [1] ;  [2]
  1. Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 305-600 (Korea, Republic of)
  2. (Korea, Republic of)
  3. College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)
Publication Date:
OSTI Identifier:
22462224
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 464; Journal Issue: 3; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; APOPTOSIS; CHLORIDES; CLEAVAGE; COMPARATIVE EVALUATIONS; ENZYMES; HARBORS; IN VITRO; IN VIVO; NEOPLASMS; PATIENTS; SIGNALS