skip to main content

SciTech ConnectSciTech Connect

Title: Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravitymore » (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.« less
Authors:
 [1] ;  [2] ;  [1]
  1. Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)
  2. Department of Biomedical Engineering, University of Isfahan, Isfahan (Iran, Islamic Republic of)
Publication Date:
OSTI Identifier:
22462201
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 464; Journal Issue: 2; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACTIN; ATOMIC FORCE MICROSCOPY; CELL PROLIFERATION; CENTRIFUGES; DENSITY; ELASTICITY; ELONGATION; FIBERS; FILAMENTS; HEIGHT; IMAGE PROCESSING; LENGTH; MICROTUBULES; MORPHOLOGICAL CHANGES; MORPHOLOGY; STEM CELLS; WIDTH