skip to main content

Title: Quantifying Unnecessary Normal Tissue Complication Risks due to Suboptimal Planning: A Secondary Study of RTOG 0126

Purpose: The purpose of this study was to quantify the frequency and clinical severity of quality deficiencies in intensity modulated radiation therapy (IMRT) planning in the Radiation Therapy Oncology Group 0126 protocol. Methods and Materials: A total of 219 IMRT patients from the high-dose arm (79.2 Gy) of RTOG 0126 were analyzed. To quantify plan quality, we used established knowledge-based methods for patient-specific dose-volume histogram (DVH) prediction of organs at risk and a Lyman-Kutcher-Burman (LKB) model for grade ≥2 rectal complications to convert DVHs into normal tissue complication probabilities (NTCPs). The LKB model was validated by fitting dose-response parameters relative to observed toxicities. The 90th percentile (22 of 219) of plans with the lowest excess risk (difference between clinical and model-predicted NTCP) were used to create a model for the presumed best practices in the protocol (pDVH{sub 0126,top10%}). Applying the resultant model to the entire sample enabled comparisons between DVHs that patients could have received to DVHs they actually received. Excess risk quantified the clinical impact of suboptimal planning. Accuracy of pDVH predictions was validated by replanning 30 of 219 patients (13.7%), including equal numbers of presumed “high-quality,” “low-quality,” and randomly sampled plans. NTCP-predicted toxicities were compared to adverse events onmore » protocol. Results: Existing models showed that bladder-sparing variations were less prevalent than rectum quality variations and that increased rectal sparing was not correlated with target metrics (dose received by 98% and 2% of the PTV, respectively). Observed toxicities were consistent with current LKB parameters. Converting DVH and pDVH{sub 0126,top10%} to rectal NTCPs, we observed 94 of 219 patients (42.9%) with ≥5% excess risk, 20 of 219 patients (9.1%) with ≥10% excess risk, and 2 of 219 patients (0.9%) with ≥15% excess risk. Replanning demonstrated the predicted NTCP reductions while maintaining the volume of the PTV receiving prescription dose. An equivalent sample of high-quality plans showed fewer toxicities than low-quality plans, 6 of 73 versus 10 of 73 respectively, although these differences were not significant (P=.21) due to insufficient statistical power in this retrospective study. Conclusions: Plan quality deficiencies in RTOG 0126 exposed patients to substantial excess risk for rectal complications.« less
 [1] ;  [2] ;  [1] ; ;  [3] ; ;  [4] ;  [5] ;  [6] ;  [4] ; ; ;  [3]
  1. Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California (United States)
  2. Department of Physics, Fort Hays State University, Hays, Kansas (United States)
  3. Department of Radiation Oncology, Washington University in St. Louis, St. Louis, Missouri (United States)
  4. Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States)
  5. NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania (United States)
  6. Akron City Hospital, Akron, Ohio (United States)
Publication Date:
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 92; Journal Issue: 2; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States