skip to main content

SciTech ConnectSciTech Connect

Title: Targeted activation of endothelin-1 exacerbates hypoxia-induced pulmonary hypertension

Pulmonary arterial hypertension (PAH) is a fatal disease that eventually results in right heart failure and death. Current pharmacologic therapies for PAH are limited, and there are no drugs that could completely cure PAH. Enhanced activity of endothelin system has been implicated in PAH severity and endothelin receptor antagonists have been used clinically to treat PAH. However, there is limited experimental evidence on the direct role of enhanced endothelin system activity in PAH. Here, we investigated the correlation between endothelin-1 (ET-1) and PAH using ET-1 transgenic (ETTG) mice. Exposure to chronic hypoxia increased right ventricular pressure and pulmonary arterial wall thickness in ETTG mice compared to those in wild type mice. Of note, ETTG mice exhibited modest but significant increase in right ventricular pressure and vessel wall thickness relative to wild type mice even under normoxic conditions. To induce severe PAH, we administered SU5416, a vascular endothelial growth factor receptor inhibitor, combined with exposure to chronic hypoxia. Treatment with SU5416 modestly aggravated hypoxia-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial vessel wall thickening in ETTG mice in association with increased interleukin-6 expression in blood vessels. However, there was no sign of obliterative endothelial cell proliferation and plexiform lesion formationmore » in the lungs. These results demonstrated that enhanced endothelin system activity could be a causative factor in the development of PAH and provided rationale for the inhibition of endothelin system to treat PAH. - Highlights: • Role of endothelin-1 in pulmonary arterial hypertension (PAH) was investigated. • The endothelin-1 transgenic (ETTG) and wild type (WT) mice were analyzed. • ETTG mice spontaneously developed PAH under normoxia conditions. • SU5416 further aggravated PAH in ETTG mice. • Enhanced endothelin system activity could be a causative factor in PAH development.« less
Authors:
 [1] ;  [2] ;  [1] ;  [2] ;  [3] ;  [1] ;  [1] ;  [4]
  1. Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)
  2. Department of Clinical Pharmacy, Kobe Pharmaceutical University, Kobe (Japan)
  3. Institute for Nutritional Science, University of Potsdam, Potsdam (Germany)
  4. (Japan)
Publication Date:
OSTI Identifier:
22458555
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 465; Journal Issue: 3; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ANOXIA; BLOOD VESSELS; COMPARATIVE EVALUATIONS; CORRELATIONS; DEATH; DRUGS; GROWTH FACTORS; HEART FAILURE; HYPERTENSION; HYPERTROPHY; INHIBITION; LUNGS; MICE; RECEPTORS; THERAPY; THICKNESS