skip to main content

SciTech ConnectSciTech Connect

Title: Structural changes of linear DNA molecules induced by cisplatin

Interaction between long DNA molecules and activated cisplatin is believed to be crucial to anticancer activity. However, the exact structural changes of long DNA molecules induced by cisplatin are still not very clear. In this study, structural changes of long linear double-stranded DNA (dsDNA) and short single-stranded DNA (ssDNA) induced by activated cisplatin have been investigated by atomic force microscopy (AFM). The results indicated that long DNA molecules gradually formed network structures, beads-on-string structures and their large aggregates. Electrostatic and coordination interactions were considered as the main driving forces producing these novel structures. An interesting finding in this study is the beads-on-string structures. Moreover, it is worth noting that the beads-on-string structures were linked into the networks, which can be ascribed to the strong DNA–DNA interactions. This study expands our knowledge of the interactions between DNA molecules and cisplatin. - Highlights: • We investigate structural changes of dsDNA and ssDNA induced by cisplatin. • AFM results indicated long dsDNA formed network, beads-on-string and aggregates. • ssDNA can form very similar structures as those of long linear dsDNA. • A possible formation process of theses novel structure is proposed.
Authors:
 [1] ;  [2] ;  [2] ; ; ; ;  [1] ;  [2] ;  [2]
  1. State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040 (China)
  2. (China)
Publication Date:
OSTI Identifier:
22458494
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochemical and Biophysical Research Communications; Journal Volume: 457; Journal Issue: 4; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ATOMIC FORCE MICROSCOPY; DNA; INTERACTIONS; PLATINUM