skip to main content

Title: Muon g−2 and Galactic Centre γ-ray excess in a scalar extension of the 2HDM type-X

We consider an extension of the lepto-specific 2HDM with an extra singlet S as a dark matter candidate. Taking into account theoretical and experimental constraints, we investigate the possibility to address both the γ-ray excess detected at the Galactic Centre and the discrepancy between the Standard Model prediction and experimental results of the anomalous magnetic moment of the muon. Our analyses reveal that the SS→τ{sup +}τ{sup −} and SS→bb-bar channels reproduce the Galactic Centre excess, with an emerging dark matter candidate which complies with the bounds from direct detection experiments, measurements of the Higgs boson invisible decay width and observations of the dark matter relic abundance. Addressing the anomalous magnetic moment of the muon imposes further strong constraints on the model. Remarkably, under these conditions, the SS→bb-bar channel still allows for the fitting of the Galactic Centre. We also comment on a scenario allowed by the model where the SS→τ{sup +}τ{sup −} and SS→bb-bar channels have comparable branching ratios, which possibly yield an improved fitting of the Galactic Centre excess.
Authors:
;  [1] ;  [1] ;  [2]
  1. National Institute of Chemical Physics and Biophysics,Rävala pst. 10, Tallinn, 10143 (Estonia)
  2. (Estonia)
Publication Date:
OSTI Identifier:
22458393
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 10; Other Information: PUBLISHER-ID: JCAP10(2015)025; OAI: oai:repo.scoap3.org:12241; Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA)
Sponsoring Org:
SCOAP3, CERN, Geneva (Switzerland)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; ABUNDANCE; BRANCHING RATIO; DETECTION; GALAXIES; GAMMA RADIATION; HIGGS BOSONS; MAGNETIC MOMENTS; NONLUMINOUS MATTER; RELICT RADIATION; STANDARD MODEL