skip to main content

SciTech ConnectSciTech Connect

Title: Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivitymore » of Direct Detection experiments.« less
Authors:
 [1]
  1. Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris (France)
Publication Date:
OSTI Identifier:
22454517
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cosmology and Astroparticle Physics; Journal Volume: 2015; Journal Issue: 03; Other Information: PUBLISHER-ID: JCAP03(2015)012; OAI: oai:repo.scoap3.org:9482; Article funded by SCOAP3. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 License. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.; Country of input: International Atomic Energy Agency (IAEA)
Sponsoring Org:
SCOAP3, CERN, Geneva (Switzerland)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASTROPHYSICS; CROSS SECTIONS; DETECTION; GEV RANGE; MODULATION; NONLUMINOUS MATTER; PHASE SHIFT; RECOILS; SIGNALS; SOLAR NEUTRINOS; SPECTRA; TIME DEPENDENCE; VELOCITY