skip to main content

SciTech ConnectSciTech Connect

Title: Effect of phase separation induced supercooling on magnetotransport properties of epitaxial La{sub 5/8−y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y≈0.4) thin film

Thin films of La{sub 5/8−y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y≈0.4) have been grown on single crystal SrTiO{sub 3} (001) by RF sputtering. The structural and surface characterizations confirm the epitaxial nature of these film. However, the difference between the ω-scan of the (002) and (110) peaks and the presence of pits/holes in the step-terrace type surface morphology suggests high density of defect in these films. Pronounced hysteresis between the field cooled cooling (FCC) and field cooled warming (FCW) magnetization measurements suggest towards the non-ergodic magnetic state. The origin of this nonergodicity could be traced to the magnetic liquid like state arising from the delicacy of the coexisting magnetic phases, viz., ferromagnetic and antiferromagnetic-charge ordered (FM/AFM-CO). The large difference between the insulator metal transitions during cooling and warming cycles (T{sub IM}{sup C} ∼ 64 K and T{sub IM}{sup W} ∼ 123 K) could be regarded as a manifestation of the nonergodicity leading to supercooling of the magnetic liquid while cooling. The nonergodicity and supercooling are weakened by the AFM-FM phase transition induced by an external magnetic field. T{sub IM} and small polaron activation energy corresponding the magnetic liquid state (cooling cycle) vary nonlinearly with the applied magnetic field but become linear inmore » the crystalline solid state (warming cycle). The analysis of the low temperature resistivity data shows that electron-phonon interaction is drastically reduced by the applied magnetic field. The resistivity minimum in the lower temperature region of the self-field warming curve has been explained in terms of the Kondo like scattering in the magnetically inhomogeneous regime.« less
Authors:
 [1] ;  [2] ; ; ; ; ;  [1] ;  [3]
  1. National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K. S. Krishnan Marg, New Delhi-110012 (India)
  2. (India)
  3. Department of Applied Physics, Delhi Technological University, Delhi-110042 (India)
Publication Date:
OSTI Identifier:
22454459
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 5; Journal Issue: 2; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACTIVATION ENERGY; ANTIFERROMAGNETISM; ATOMIC FORCE MICROSCOPY; CARBON MONOXIDE; DENSITY; EPITAXY; FCC LATTICES; LIQUIDS; MAGNETIC FIELDS; MAGNETIC MATERIALS; MAGNETIZATION; MONOCRYSTALS; PEAKS; PHASE TRANSFORMATIONS; SOLIDS; SPECTROSCOPY; SPUTTERING; STRONTIUM TITANATES; SUPERCOOLING; THIN FILMS