skip to main content

Title: First-principle natural band alignment of GaN / dilute-As GaNAs alloy

Density functional theory (DFT) calculations with the local density approximation (LDA) functional are employed to investigate the band alignment of dilute-As GaNAs alloys with respect to the GaN alloy. Conduction and valence band positions of dilute-As GaNAs alloy with respect to the GaN alloy on an absolute energy scale are determined from the combination of bulk and surface DFT calculations. The resulting GaN / GaNAs conduction to valence band offset ratio is found as approximately 5:95. Our theoretical finding is in good agreement with experimental observation, indicating the upward movements of valence band at low-As content dilute-As GaNAs are mainly responsible for the drastic reduction of the GaN energy band gap. In addition, type-I band alignment of GaN / GaNAs is suggested as a reasonable approach for future device implementation with dilute-As GaNAs quantum well, and possible type-II quantum well active region can be formed by using InGaN / dilute-As GaNAs heterostructure.
Authors:
;  [1]
  1. Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015 (United States)
Publication Date:
OSTI Identifier:
22454429
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 5; Journal Issue: 1; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ALLOYS; ARSENIC COMPOUNDS; DENSITY; DENSITY FUNCTIONAL METHOD; EQUIPMENT; GALLIUM NITRIDES; QUANTUM WELLS; SURFACES