skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process

Journal Article · · AIP Advances
DOI:https://doi.org/10.1063/1.4905903· OSTI ID:22454422
; ; ; ; ;  [1];  [1];  [2]
  1. International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)
  2. MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

The stable operation of transistors under a positive bias stress (PBS) is achieved using Hf incorporated into InO{sub x}-based thin films processed at relatively low temperatures (150 to 250 °C). The mobilities of the Hf-InO{sub x} thin-film transistors (TFTs) are higher than 8 cm{sup 2}/Vs. The TFTs not only have negligible degradation in the mobility and a small shift in the threshold voltage under PBS for 60 h, but they are also thermally stable at 85 °C in air, without the need for a passivation layer. The Hf-InO{sub x} TFT can be stable even annealed at 150 °C for positive bias temperature stability (PBTS). A higher stability is achieved by annealing the TFTs at 250 °C, originating from a reduction in the trap density at the Hf-InO{sub x}/gate insulator interface. The knowledge obtained here will aid in the realization of stable TFTs processed at low temperatures.

OSTI ID:
22454422
Journal Information:
AIP Advances, Vol. 5, Issue 1; Other Information: (c) 2015 Author(s); Country of input: International Atomic Energy Agency (IAEA); ISSN 2158-3226
Country of Publication:
United States
Language:
English