skip to main content

Title: Higher-order Dirac solitons in binary waveguide arrays

We study optical analogues of higher-order Dirac solitons (HODSs) in binary waveguide arrays. Like higher-order solitons obtained from the well-known nonlinear Schrödinger equation governing the pulse propagation in an optical fiber, these HODSs have amplitude profiles which are numerically shown to be periodic over large propagation distances. At the same time, HODSs possess some unique features. Firstly, the period of a HODS depends on its order parameter. Secondly, the discrete nature in binary waveguide arrays imposes the upper limit on the order parameter of HODSs. Thirdly, the order parameter of HODSs can vary continuously in a certain range. - Highlights: • Higher-order Dirac solitons in nonlinear binary waveguide arrays are numerically demonstrated. • Amplitude profiles of higher-order Dirac solitons are periodic during propagation. • The period of higher-order Dirac solitons decreases when the soliton order increases.
Authors:
 [1] ;  [2] ;  [1]
  1. Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam)
  2. (Germany)
Publication Date:
OSTI Identifier:
22451243
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics; Journal Volume: 361; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; NONLINEAR PROBLEMS; OPTICAL FIBERS; PERIODICITY; SCHROEDINGER EQUATION; SOLITONS; WAVEGUIDES