skip to main content

Title: Complex oscillator and Painlevé IV equation

Supersymmetric quantum mechanics is a powerful tool for generating exactly solvable potentials departing from a given initial one. In this article the first- and second-order supersymmetric transformations will be used to obtain new exactly solvable potentials departing from the complex oscillator. The corresponding Hamiltonians turn out to be ruled by polynomial Heisenberg algebras. By applying a mechanism to reduce to second the order of these algebras, the connection with the Painlevé IV equation is achieved, thus giving place to new solutions for the Painlevé IV equation.
Authors:
;
Publication Date:
OSTI Identifier:
22451202
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics; Journal Volume: 359; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EXACT SOLUTIONS; HAMILTONIANS; POLYNOMIALS; QUANTUM MECHANICS; SUPERSYMMETRY