skip to main content

Title: Fractional Josephson current through a Luttinger liquid with topological excitations

Recently, the Majorana fermion has received great attentions due to its promising application in the fault-tolerant quantum computation. This application requires more accessible methods to detect the motion and braiding of the Majorana fermions. We use a Luttinger liquid ring to achieve this goal, where the ring geometry is nontrivial in the sense that it leads to fermion-parity-dependent topological excitations. First, we briefly review the essential physics of the Luttinger liquid and the Majorana fermion, in order to give an introduction of the general framework used in the following main work. Then, we theoretically investigated the DC Josephson effect between two topological superconductors via a Luttinger liquid ring. A low-energy effective Hamiltonian is derived to show the existence of the fractional Josephson current. Also, we find that the amplitude of the Josephson current, which is determined by the correlation function of Luttinger liquid, exhibits different behaviors in terms of the parity of Luttinger liquid due to the topological excitations. Our results suggest a possible method to detect the Majorana fermions and their tunneling process.
Authors:
; ;
Publication Date:
OSTI Identifier:
22451191
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics; Journal Volume: 358; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CORRELATION FUNCTIONS; FERMIONS; GEOMETRY; HAMILTONIANS; JOSEPHSON EFFECT; QUANTUM COMPUTERS; SUPERCONDUCTORS; TOPOLOGY; TUNNEL EFFECT