skip to main content

Title: Study of the all orders multiplicative renormalizability of a local confining quark action in the Landau gauge

The inverse of the Faddeev–Popov operator plays a pivotal role within the Gribov–Zwanziger approach to the quantization of Euclidean Yang–Mills theories in Landau gauge. Following a recent proposal (Capri et al., 2014), we show that the inverse of the Faddeev–Popov operator can be consistently coupled to quark fields. Such a coupling gives rise to a local action while reproducing the behaviour of the quark propagator observed in lattice numerical simulations in the non-perturbative infrared region. By using the algebraic renormalization framework, we prove that the aforementioned local action is multiplicatively renormalizable to all orders.
Authors:
; ;
Publication Date:
OSTI Identifier:
22451170
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics; Journal Volume: 356; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BAG MODEL; COMPUTERIZED SIMULATION; GAUGE INVARIANCE; PROPAGATOR; QUANTIZATION; QUARKS; RENORMALIZATION; YANG-MILLS THEORY