skip to main content

SciTech ConnectSciTech Connect

Title: On the Klein–Gordon oscillator subject to a Coulomb-type potential

By introducing the scalar potential as modification in the mass term of the Klein–Gordon equation, the influence of a Coulomb-type potential on the Klein–Gordon oscillator is investigated. Relativistic bound states solutions are achieved to both attractive and repulsive Coulomb-type potentials and the arising of a quantum effect characterized by the dependence of angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system is shown. - Highlights: • Interaction between the Klein–Gordon oscillator and a modified mass term. • Relativistic bound states for both attractive and repulsive Coulomb-type potentials. • Dependence of the Klein–Gordon oscillator frequency on the quantum numbers. • Relativistic analogue of a position-dependent mass system.
Authors:
;
Publication Date:
OSTI Identifier:
22451145
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Physics; Journal Volume: 355; Other Information: Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BOUND STATE; KLEIN-GORDON EQUATION; MATHEMATICAL SOLUTIONS; OSCILLATORS; QUANTUM NUMBERS; RELATIVISTIC RANGE