skip to main content

SciTech ConnectSciTech Connect

Title: Synthesis, crystal structure and properties of alluaudite-like triple molybdate Na{sub 25}Cs{sub 8}Fe{sub 5}(MoO{sub 4}){sub 24}

A new triple molybdate Na{sub 25}Cs{sub 8}Fe{sub 5}(MoO{sub 4}){sub 24} was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na{sub 25}Cs{sub 8}Fe{sub 5}(MoO{sub 4}){sub 24} were obtained and its structure was solved (the space group P1{sup ¯}, a=12.5814(5), b=13.8989(5), c=28.4386(9) Å, α=90.108(2), β=90.064(2), γ=90.020(2)°, V=4973.0(3) Å{sup 3}, Z=2, R=0.0440). Characteristic features of the structure are polyhedral layers composed of pairs of edge-shared FeO{sub 6} and (Fe, Na)O{sub 6} octahedra, which are connected by bridging MoO{sub 4} tetrahedra. The layers share common vertices with bridging MoO{sub 4} tetrahedra to form an open 3D framework with the cavities occupied by the Cs{sup +} and Na{sup +} cations. The compound undergoes first-order phase transformation at 642 K and above this phase transition, electrical conductivity reaches 10{sup −3}–10{sup −2} S cm{sup −1}. Thus, Na{sub 25}Cs{sub 8}Fe{sub 5}(MoO{sub 4}){sub 24} may be considered as a promising compound for developing new materials with high ionic conductivity. - Graphical abstract: A new triple molybdate Na{sub 25}Cs{sub 8}Fe{sub 5}(MoO{sub 4}){sub 24} was synthesized and structurally characterized, its physicochemical properties were studied. - Highlights: • New compound Na{sub 25}Cs{sub 8}Fe{submore » 5}(MoO{sub 4}){sub 24} was synthesized. • Physicochemical properties of the compound were studied. • The first-order phase transformation is observed. • Electrical conductivity above 642 K is (10{sup −2}–10{sup −3}) S cm{sup −1}. • New compound may be considered as promising object with high ionic conductivity.« less
Authors:
 [1] ;  [2] ;  [3] ;  [2] ;  [4] ;  [1] ;  [3] ; ; ;  [4] ;  [1] ;  [2]
  1. Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences, Sakh’yanova St. 6, Ulan-Ude, 670047 Buryat Republic (Russian Federation)
  2. (Russian Federation)
  3. Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Akad. Lavrentyev Ave. 3, Novosibirsk 630090 (Russian Federation)
  4. Department of Chemistry, Moscow State University, Moscow 119899 (Russian Federation)
Publication Date:
OSTI Identifier:
22451134
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 220; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CALORIMETRY; CATIONS; CESIUM IONS; CRYSTAL STRUCTURE; DIELECTRIC MATERIALS; HARMONIC GENERATION; IONIC CONDUCTIVITY; IRON OXIDES; LAYERS; MOLYBDATES; MONOCRYSTALS; PHASE TRANSFORMATIONS; SODIUM; SODIUM IONS; SOLIDS; SPACE GROUPS; SPECTROSCOPY; SYNTHESIS; X-RAY DIFFRACTION