skip to main content

SciTech ConnectSciTech Connect

Title: Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts

A cationic amphiphilic molecule was synthesized and employed to encapsulate Lindqvist ([M{sub 6}O{sub 19}]{sup 2−}) and Keggin polyoxometalates ([SiM{sub 12}O{sub 40}]{sup 4−}, M=Mo, W) to form hybrid molecules through electrostatic interaction. The X-ray diffraction results illustrate that the former hybrids possess lamellar nanostructures in their solid states, while the latter hybrids show a cubic Im3m packing model with low intensities and poor long-range order. These hybrids have clear charge-transfer characters as shown in their deeper colors and UV–vis diffuse reflectance spectra. According to the reported reduction potentials of the POM acceptors and the band gaps deduced from their diffuse reflectance spectra, we have calculated the theoretical values of the lowest unoccupied molecular orbital (LUMO) position similar to the electron affinity (E{sub A}) of solid materials. Such energy level parameters are comparable to those of electroluminescence and electron-transport materials commonly used in organic electroluminescence devices. These organic–polyoxometalate charge-transfer salts have more advantages, such as higher decomposition temperatures, easier film fabrication and better electron affinities, which presumably would be used for electron-transport materials in the area of the electroluminescence. - Graphical abstract: Hybrid molecular materials with charge-transfer characters formed by a positively charged donor L and acceptors of the Lindqvist-type and Keggin-typemore » POMs have lamellar and cubic structures in their solid state. - Highlights: • Charge-transfer salts are obtained by self-assembling POMs with an anthracene cation. • Their energy parameters are comparable to those of optoelectronic materials in OLEDs. • These POM-based hybrids could be applied in the area of optoelectronic devices.« less
Authors:
 [1] ;  [2] ;  [1]
  1. Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province (China)
  2. (China)
Publication Date:
OSTI Identifier:
22443446
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 219; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; AFFINITY; CATIONS; DECOMPOSITION; ELECTROLUMINESCENCE; ELECTRONS; ENERGY LEVELS; FILMS; HYBRIDIZATION; INTERACTIONS; MOLECULAR ORBITAL METHOD; MOLECULES; NANOSTRUCTURES; OPTOELECTRONIC DEVICES; SALTS; SOLIDS; SPECTRA; SYNTHESIS; X-RAY DIFFRACTION