skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [2]; ; ;  [1];  [1]
  1. Key Laboratory of Chemical Sensing and Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022 (China)
  2. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

A new selenidoantimonate (CH{sub 3}NH{sub 4})[Mn(phen){sub 2}](SbSe{sub 4})·phen (1, phen=1,10-phenanthroline) and an iron polyselenide [Fe(phen){sub 2}](Se{sub 4}) (2) were obtained under hydro(solvo)thermal conditions. Compound 1 represents the first example of a selenidoantimonate anion as a ligand to a transition-metal π-conjugated ligand complex cation. Compound 2 containing a κ{sup 2}Se{sup 1},Se{sup 4} chelating tetraselenide ligand, represents the only example of a tetraselenide ligand to a Fe complex cation. Compounds 1 and 2 exhibit optical gaps of 1.71 and 1.20 eV, respectively and their thermal stabilities have been investigated by thermogravimetric analyses. The electronic band structure along with the density of states calculated by the DFT method indicate that the optical absorptions mainly originate from the charge transitions from the Se 4p and Mn 3d states to the phen p–π{sup ⁎} orbital for 1 and the Se 4p and Fe 3d states to the phen p–π{sup ⁎} orbital for 2. - Graphical abstract: Two metal–Se complexes, representing the only example of a selenidoantimonate ligand to a TM π-conjugated ligand complex, and a tetraselenide ligand to a Fe complex cation, were synthesized. - Highlights: • The first π-conjugated ligand complex containing selenidoantimonate was isolated. • The first example of a tetraselenide ligand to a Fe complex cation was reported. • We found that phen can adjust the optical band gaps of metal–Se complexes.

OSTI ID:
22443418
Journal Information:
Journal of Solid State Chemistry, Vol. 218; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English