skip to main content

SciTech ConnectSciTech Connect

Title: Enhancement of luminescence emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor by Li{sup +} co-doping

This paper demonstrates the effects of Li{sup +} co-doping on the structure, morphology, and luminescence properties of GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} phosphor prepared using a high-temperature solid-state chemistry method. The GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} powders synthesized with the Li{sup +} co-dopant (in concentrations of 0, 5, 10, and 15 mol%) are characterized by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectroscopy. Structural analysis showed that powders co-doped with Li{sup +} have larger crystallite sizes and slightly smaller crystal lattice parameters than powders prepared without Li{sup +} ions. Photoluminescence down-conversion (345-nm excitation) and up-conversion (980-nm excitation) spectra show characteristic Er{sup 3+} emissions, with the most intense bands peaking at 525 nm ({sup 2}H{sub 11/2}→{sup 4}I{sub 15/2} transition) and 552 nm ({sup 4}S{sub 3/2}→{sup 4}I{sub 15/2}). The intensity of up-conversion emission from GdVO{sub 4}:Er{sup 3+}/Yb{sup 3+} is enhanced (by a factor of four) by co-doping with 5 mol% of Li{sup +} ions. The mechanisms responsible for this emission enhancement are discussed. - Graphical abstract: UC emission spectra for GdVO{sub 4}:1.5-mol% Er{sup 3+}/20-mol% Yb{sup 3+} powders co-doped with different concentrations of Li{sup +} ions, recorded under 980-nm excitation. - Highlights: • 5-mol% Li{sup +} co-doped powders have 400% enhanced up-conversion emission intensity.more » • 15-mol% Li{sup +} co-doping produces 40% higher emission in down-conversion. • Li{sup +} co-doped powders have larger crystallite size and smaller lattice parameters.« less
Authors:
; ; ; ;
Publication Date:
OSTI Identifier:
22443390
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Solid State Chemistry; Journal Volume: 217; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CRYSTAL LATTICES; DEUTERIUM; DOPED MATERIALS; EMISSION SPECTRA; ERBIUM IONS; EXCITATION; LATTICE PARAMETERS; LITHIUM IONS; PHOTOLUMINESCENCE; POWDERS; SCANNING ELECTRON MICROSCOPY; SOLIDS; SPECTROSCOPY; URANIUM CARBIDES; X-RAY DIFFRACTION; YTTERBIUM IONS