skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Residues R{sup 199}H{sup 200} of prototype foamy virus transactivator Bel1 contribute to its binding with LTR and IP promoters but not its nuclear localization

Journal Article · · Virology
;  [1];  [1]; ;  [1];  [2];  [1]
  1. Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071 (China)
  2. Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada H3T 1E2 (Canada)

Prototype foamy virus encodes a transactivator called Bel1 that enhances viral gene transcription and is essential for PFV replication. Nuclear localization of Bel1 has been reported to rely on two proximal basic motifs R{sup 199}H{sup 200} and R{sup 221}R{sup 222}R{sup 223} that likely function together as a bipartite nuclear localization signal. In this study, we report that mutating R{sup 221}R{sup 222}R{sup 223}, but not R{sup 199}H{sup 200}, relocates Bel1 from the nucleus to the cytoplasm, suggesting an essential role for R{sup 221}R{sup 222}R{sup 223} in the nuclear localization of Bel1. Although not affecting the nuclear localization of Bel1, mutating R{sup 199}H{sup 200} disables Bel1 from transactivating PFV promoters. Results of EMSA reveal that the R{sup 199}H{sup 200} residues are vital for the binding of Bel1 to viral promoter DNA. Moreover, mutating R{sup 199}H{sup 200} in Bel1 impairs PFV replication to a much greater extent than mutating R{sup 221}R{sup 222}R{sup 223}. Collectively, our findings suggest that R{sup 199}H{sup 200} directly participate in Bel1 binding to viral promoter DNA and are indispensible for Bel1 transactivation activity. - Highlights: • The R{sup 221}R{sup 222}R{sup 223} residues are essential for the nuclear localization of Bel1. • Although not affecting the nuclear localization of Bel1, mutating R{sup 199}H{sup 200} disables Bel1 from transactivating PFV promoters. • The R{sup 199}H{sup 200} residues directly participate in Bel1 binding to viral promoter DNA. • Mutating R{sup 199}H{sup 200} in Bel1 impairs PFV replication to a much greater extent than mutating R{sup 221}R{sup 222}R{sup 223}.

OSTI ID:
22435011
Journal Information:
Virology, Vol. 449; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0042-6822
Country of Publication:
United States
Language:
English