skip to main content

SciTech ConnectSciTech Connect

Title: Self-assembly of Fe{sub 2}O{sub 3}/reduced graphene oxide hydrogel for high Li-storage

Highlights: • A new composite hydrogel consisted of Fe{sub 2}O{sub 3} nanotubes and graphene has been prepared via hydrothermal method. • In this composite hydrogel, RGO sheets self-assemble into an interconnected macroporous framework and Fe{sub 2}O{sub 3} nanotubes encapsulate into RGO layers. • The resulting composite hydrogel exhibits high specific capacity (850 mAh/g at 200 mA/g), good rate capability and cycling stability. - Abstract: A novel three-dimensional (3D) Fe{sub 2}O{sub 3}/reduced graphene oxide (RGO) hydrogel (FGH) is prepared by a facile hydrothermal strategy. In this composite hydrogel, RGO sheets self-assemble into an interconnected macroporous framework and Fe{sub 2}O{sub 3} nanotubes encapsulate into RGO layers. The FGH delivers high rate capacities of 850, 780, 550, and 400 mAh/g at current densities of 200, 400, 600, and 800 mA/g, respectively. The specific capacity can still maintain at ∼600 mAh/g after 70 cycles, which greatly outperforms that of pure Fe{sub 2}O{sub 3} nanotubes (∼60 mAh/g after 70 cycles). The improved electrochemical performance is ascribed to the unique macroscopic structure which is beneficial for enlarging the active surface area, shortening the electron/ion pathway, accommodating the volume change of Fe{sub 2}O{sub 3} nanotubes, and preventing the aggregation of both Fe{sub 2}O{sub 3} nanoparticles and RGOmore » sheets.« less
Authors:
; ; ; ; ;
Publication Date:
OSTI Identifier:
22420818
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 62; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; AGGLOMERATION; CAPACITY; CARBON OXIDES; CURRENT DENSITY; ELECTROCHEMISTRY; ELECTRONS; FERRITES; GRAPHENE; HYDROTHERMAL SYNTHESIS; IRON OXIDES; LAYERS; NANOPARTICLES; NANOTUBES; PHASE STABILITY; SURFACE AREA; THREE-DIMENSIONAL LATTICES