skip to main content

SciTech ConnectSciTech Connect

Title: Controlled synthesis and novel photoluminescence properties of BaTiO{sub 3}:Eu{sup 3+}/Eu{sup 2+} nanocrystals

Highlights: • Tetragonal phase BaTiO{sub 3}:Eu nanocrystals were successfully synthesized using a hydrothermal method. • Under 398 nm excitation, the emissions from Eu{sup 2+} and Eu{sup 3+} ions were observed. • The emission band of Eu{sup 2+} from BaTiO{sub 3}:Eu was observed to broaden with increasing Eu concentration. - Abstract: Tetragonal phase BaTiO{sub 3}:Eu nanocrystals were successfully synthesized using a hydrothermal method and a subsequent calcination treatment. The structures and morphologies of nanocrystals were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy. The photoluminescence properties of BaTiO{sub 3}:Eu were investigated in detail. Under 398 nm excitation, the emissions from Eu{sup 2+} and Eu{sup 3+} ions were observed, indicating that Eu{sup 2+} and Eu{sup 3+} ions coexisted in BaTiO{sub 3}:Eu nanocrystals. Especially, the emission band of Eu{sup 2+} from BaTiO{sub 3}:Eu was observed to broaden with increasing Eu concentration. When the Eu concentration was 0.5 mol%, the {sup 5}D{sub 0} → {sup 7}F{sub 0} and {sup 5}D{sub 1} → {sup 7}F{sub 0} emissions were observed. In addition, under 537 nm excitation, the emission intensity increased with increasing Eu concentration.
Authors:
; ; ;
Publication Date:
OSTI Identifier:
22420755
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 61; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; BARIUM COMPOUNDS; CALCINATION; CONCENTRATION RATIO; EUROPIUM IONS; EXCITATION; HYDROTHERMAL SYNTHESIS; MORPHOLOGY; NANOSTRUCTURES; PHOTOLUMINESCENCE; RAMAN SPECTROSCOPY; SCANNING ELECTRON MICROSCOPY; TETRAGONAL LATTICES; TITANATES; TRANSMISSION ELECTRON MICROSCOPY; X-RAY DIFFRACTION