skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Combustion synthesized rod-like nanostructure hematite with enhanced lithium storage properties

Journal Article · · Materials Research Bulletin

Graphical abstract: Fe{sub 2}O{sub 3} nanorods are synthesized by combustion method using alcohol as both solvent and fuel. As an anode material for lithium-ion batteries, the Fe{sub 2}O{sub 3} nanorod electrode delivers good electrochemical performance. - Highlights: • We prepared Fe{sub 2}O{sub 3} nanorod by a facile and powerful combustion method. • The Fe{sub 2}O{sub 3} nanorod shows high capacity, good cycle stability, and rate performance. • Combustion saves time and energy to meet the demand of green and sustainable industry. - Abstract: Fe{sub 2}O{sub 3} nanorods are synthesized by combustion method using alcohol as both solvent and fuel, which is a facile and effective strategy for the large-scale and inexpensive fabrication. The Fe{sub 2}O{sub 3} nanorods are with the well distributed diameters of 20–30 nm and length ranging from 80 to 100 nm. As an anode material for lithium-ion batteries, the Fe{sub 2}O{sub 3} nanorod electrode delivers a high discharge capacity of 761.7 mA h g{sup −1} after 60 cycles at 500 mA g{sup −1}, and 727.2 mA h g{sup −1} at a high current density of 2000 mA g{sup −1}. The good electrochemical performance is attributed to the sufficient contact of active material and electrolyte, large surface area, and short diffusion length of Li{sup +}.

OSTI ID:
22420743
Journal Information:
Materials Research Bulletin, Vol. 61; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0025-5408
Country of Publication:
United States
Language:
English