skip to main content

Title: Self-catalysed InAs{sub 1-x}Sb{sub x} nanowires grown directly on bare Si substrates

Highlights: • Self-catalysed InAs{sub 1-x}Sb{sub x} nanowires grown directly on bare Si substrates. • InAs{sub 1-x}Sb{sub x} nanowires directly grown on bare Si substrates without employing the commonly used nucleation nanowire stems which could be problematic in device applications. • Pre-deposited Indium droplets were employed to facilitate InAs{sub 1-x}Sb{sub x} nanowire nucleation and growth. • Unravels a promising route for the direct integration of InAs{sub 1-x}Sb{sub x} nanowires with the well-established Silicon platform. - Abstract: We report the self-catalysed growth of InAs{sub 1-x}Sb{sub x} nanowires directly on bare Si substrates. Vertically aligned and non-tapered InAs{sub 1-x}Sb{sub x} nanowires were realized via indium-assisted nucleation without using nanowire stems. The compositions of the InAs{sub 1-x}Sb{sub x} nanowires were determined by high resolution X-ray diffraction (HRXRD). It is observed that the geometry of the nanowires is modified by the Sb flux resulting in an almost doubling of the lateral dimension and a corresponding suppression in the axial growth of the InAs{sub 1-x}Sb{sub x} nanowires. This observation unravels a method to modify the geometry of InAs nanowire and open up a promising route for the direct integration of InAs{sub 1-x}Sb{sub x} nanowires with the well-established Si platform.
Authors:
;
Publication Date:
OSTI Identifier:
22420700
Resource Type:
Journal Article
Resource Relation:
Journal Name: Materials Research Bulletin; Journal Volume: 60; Other Information: Copyright (c) 2014 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CONCENTRATION RATIO; DROPLETS; EPITAXY; INDIUM ANTIMONIDES; INDIUM ARSENIDES; NANOWIRES; NUCLEATION; SEMICONDUCTOR MATERIALS; SILICON; SUBSTRATES; X-RAY DIFFRACTION